
A Uniform Metric for Anaglyph Calculation

Zhe Zhanga and David F. McAllisterb

aProgram of Operations Research
bDepartment of Computer Science

North Carolina State University, Raleigh, NC 27695

ABSTRACT

We evaluate a new method for computing color anaglyphs based on uniform approximation in CIE color space.
The method depends on the spectral distribution properties of the primaries of the monitor and the transmission
functions of the filters in the viewing glasses. We will compare the result of this method with several other
methods that have been proposed for computing anaglyphs. To compute the color at a given pixel in the
anaglyph image requires solving a linear program. We exploit computational properties of the simplex algorithm
to reduce computation time by 72 to 89 percent. After computing the color at a pixel, a depth-first search is
performed to collect all neighboring pixels with similar color so that a simple matrix-vector multiplication can
be applied. We also parallelize the algorithm and implement it on a cluster environment. We discuss the effects
of different data dividing schemes.

Keywords: Anaglyph Stereo, Uniform Approximation, Linear Programming, Parallel Computing, CIE, Photo-
shop, Least Squares Approximation

1. UNIFORM ANAGLYPH CALCULATION

In this section we ill provide background for our method. In Section 2 we give a color comparison of different
anaglyph calculation methods. In Section 3 we present how we accelerate the calculation in our method. We
discuss the results of our acceleration techniques in Section 4. Conclusions and future work are presented in
Section 5.

1.1. Introduction to Anaglyph Stereo Rendering

Anaglyphs have developed a bad name in the stereo community because of poor color representation and ghost-
ing problems. The advantages of using anaglyphs vs. other methods of transmitting stereo are obvious and
applications abound. We will not discuss them here.

Some popular algorithms for computing anaglyphs ignore the properties of the display device and the glasses.
In Sanders and McAllister1 we compared the Photoshop algorithm (PS), the Modified Photoshop algorithm
(MPS), and the least squares algorithm (LS) proposed by Eric Dubois.2 Our method is based on Dubois’
approach, but we change the technique for measuring vector length and consider the computational algorithms
necessary to compute the anaglyph in a reasonable time. As before, we ignore the important issue of retinal
rivalry3 which can create the appearance of ghosting. The conversion values given below are for LCD displays.

The conversion from RGB space to CIE space requires a linear transformation represented by the matrix C.
The matrix C for LCD displays is:

C =

⎛
⎝

XR XG XB

YR YG YB

ZR ZG ZB

⎞
⎠ =

⎛
⎝

0.4243 0.3105 0.1657
0.2492 0.6419 0.1089
0.0265 0.1225 0.8614

⎞
⎠

Further author information: (Send correspondence to Zhe Zhang)
a:Email: zzhang3@ncsu.edu, Telephone: 1 919 513 1907, b:Email: mcallist@ncsu.edu

The colors visible through a filter depend on the transmission function f(λ) of the filter. The function f
specifies the percentages of each visible wavelength λ transmitted by the filter. The product of the primary spec-
tral distribution with the transmission function gives the spectral distribution of the primary as seen through
the filter. The matrices Al for the left eye and Ar for the right eye convert the resulting filtered colors to CIE
coordinates. For some common red/cyan glasses used below, these conversion matrices are:

Al =

⎛
⎝

0.1840 0.0179 0.0048
0.0876 0.0118 0.0018
0.0005 0.0012 0.0159

⎞
⎠ , Ar =

⎛
⎝

0.0153 0.1092 0.1171
0.0176 0.3088 0.0777
0.0201 0.1016 0.6546

⎞
⎠

Eric Dubois1 2 showed how to use the transmission properties and spectral distributions for approximating
colors in CIE color space to compute anaglyph colors. Dubois defined the length of a vector x = [X, Y, Z] in
CIE space, using the Euclidean norm, ‖x‖2 = (X2 + Y 2 + Z2)

1
2 . The distance between two points x1 and x2 is

therefore ‖x1 − x2‖2. In this case determining the closest vector in a subspace to a point not in the subspace
is called least squares approximation (LS); the CIE color space is a linear space and approximation can be
accomplished by a simple matrix multiplication for each pixel. LS approximation is equivalent to a projection
in R6 to the 3D subspace spanned by the 6 dimensional columns of the partitioned 6 x 3 matrix R defined
below with right hand side partitioned vector d. The matrix C is the RGB-CIE conversion matrix defined above
and v is the 6 component vector consisting of the left eye RGB color CL and the right eye color CR, v = [CL, CR]T :

R =
(

Al

Ar

)
, d =

(
C 0
0 C

)
v

The projection minimizes the Euclidean length of the vector R[r, g, b]T − d.

This algorithm also uses scaling by a diagonal matrix N so that the white vector w3 = [1, 1, 1] in R3 is
mapped to the white/white vector w6 = [1, 1, 1, 1, 1, 1] in R6. The linear map can be written as [r, g, b]T =
N(RT R)−1RT d = Bv. The B matrices for LS approximation is

B =

⎛
⎝

0.4154 0.4710 0.1669 −0.0109 −0.0364 −0.0060
−0.0458 −0.0484 −0.0257 0.3756 0.7333 0.0111
−0.0547 −0.0615 0.0128 −0.0651 −0.1287 1.2971

⎞
⎠

This algorithm was studied in Sanders and McAllister1 and we omit the details. The B matrices for the PS
and the MPS methods are also given there.

We note that the approximation may result in RGB components that are out of range. That is, some may
be negative and some may exceed 1. Dubois recommends clipping to the RGB unit cube to solve this problem.
Although this process involves a trivial computation, applying it to every pixel in an image adds to the time
complexity. In addition, the method produces images that can be a bit dark. It does not preserve color equality
as the Photoshop method does. That is, if CL = CR, it is not necessarily the case that the optimal solution is
[r, g, b]T = CL. In Figure 1(a) we have chosen equally spaced colors in the RGB cube for CL = CR. Figure1(b)
shows the optimal solutions in the RGB cube. Note how the solutions have been mapped to a parallelepiped
and many lie outside the unit RGB cube.

Greyscale, however, is preserved in the sense that if v is a (nonnegative) scalar multiple of white, v = αW ,
then the optimal solution is also a scalar multiple of white. This follows from the properties of norms and the
fact that matrix multiplication is linear: B(αw6) = αBw6 and ‖Ax − αy‖ = α‖A(1

αx) − y‖, α > 0.

1.2. Uniform Anaglyph Calculation Algorithm

In this paper we change the length measure or the norm to the Chebychev, minimax, infinity or uniform norm
of a vector x and define ‖x‖∞ = max{|X |, |Y |, |Z|}. Approximation is in CIE space as in the Dubois calculation
but we minimize the length of the vector R[r, g, b]T − d using the uniform norm (UN) instead.

(a) Equally spaced
colors in RGB

(b) Images of points
in part (a)

Figure 1.

As in the LS case, to ensure that the white vertex in R3, [1,1,1], is mapped to the white vertex in R6,
[1,1,1,1,1,1], we use a normalization matrix N = Diag[6.60522, 3.23678, 0.00263908, 4.02254, 8.12129, 12.624].
To minimize the maximum deviation, we use a 7th variable ε and we formulate the approximation problem as a
linear program (LP):

minimize ε subject to the constraints (s.t.) :
|(R[r, g, b] − Nd)i| ≤ ε, 1 ≤ i ≤ 6

r, g, b ≤ 1

The Simplex algorithm computes only nonnegative solutions. Since ε is bounded below automatically, the
problem becomes a 7-variable LP with 15 constraints (the absolute value constraints are converted to two
constraints each).

We can write the constraints as follows:

minimize ε subject to the constraints (s.t.) :
−ε ≤ R[r, g, b]− Nd)i ≤ ε, 1 ≤ i ≤ 6

r, g, b ≤ 1

where all variables are nonnegative.

As in the LS case it does not preserve color equality and does preserve greyscale.

1.3. Linear Programming

As stated above, equation 1 is a linear program (LP). An LP is an optimization problem where both the objective
function and the constraint functions are linear, a canonical form being the following:

minimize cT x s.t. (1)
Ax ≤ b

A common method for solving an LP is the simplex algorithm, which is based on the observation that the
feasible region of an LP, i.e., the set of all points x that satisfy the constraint functions Ax ≤ b, is a polygon. The
algorithm moves to adjacent vertices in a direction with a decreasing objective function value. An anti-circling
scheme is used so that the algorithm will never consider a previously visited vertex. This scheme, combined with
the fact that there are always finite number of vertices in the polygon, guarantees that the simplex algorithm
finds the optimum in a finite number of steps.

While the simplex algorithm is conceptually elegant and normally efficient, the O(2n) worst case complexity
can make it impractical for large scale problems. Since the 1980’s algorithms with polynomial running time have
been developed, the most important one of which is the interior point method. While the interior algorithm has
a better asymptotic complexity, the simplex algorithm has less cost single step. In our problem the small size of
the LP justifies using the simplex algorithm.

Solving an LP is considerably more computationally complex than applying a single matrix multiplication.
Hence the problem produces interesting computational issues and in section 3 we seek parallel computation
methods to accelerate the calculation to take advantage of coherence in digital images: the optimal solution at
a given pixel is normally close to the optimal solutions of the surrounding pixels and the optimal solution for
a pixel in a given frame of video is usually close to the optimal solution in the succeeding frame. Our goal is
to produce anaglyphs of video signals at NTSC rates so we can apply the technique to problems like distance
learning and virtual laboratories.

2. COLOR AND PERFORMANCE OF THE UNIFORM METHOD

2.1. Color Test

We compare the color, brightness and ghosting qualities of four algorithms: UN, LS, PS, and MPS. We created
Gouraud shaded ellipsoids using 3D Studio. The hue and saturation over a given ellipsoid are the same for all
pixels, but brightness varies from approximately 0 to 100 percent.

All ellipsoids are about the same size and the same distance from the viewer. We chose 64 RGB values that
were equally spaced over the RGB cube, grouping them eight at a time. The colors are the coordinates of vertices
of subcubes with edge lengths approximately 255

3
∼= 85. We consider all permutations of the intensities of 0, 85,

171 and 255 taken 3 at a time. The background is set to a neutral gray intensity of 166. There is no gamma
correction. The cubes are numbered as shown in Table 1:

Cube number R G B
Cube 1 0, 85 0, 85 0, 85
Cube 2 171, 255 0, 85 0, 85
Cube 3 171, 255 171, 255 0, 85
Cube 4 0, 85 171, 255 0, 85
Cube 5 0, 85 0, 85 171, 255
Cube 6 171, 255 0, 85 171, 255
Cube 7 0, 85 171, 255 171, 255
Cube 8 171, 255 171, 255 171, 255

Table 1. Cube numbering scheme

As an example, the images for cube 6 are shown in Figures 2 and 3.

2.2. Color Results

We did not attempt to perform a study in which the results were statistically sound since the effect of retinal
rivalry cannot be predicted nor controlled. However, the comparisons for three non-colorblind observers were
consistent, so we report them here. We compare each ellipsoid with the original left or right eye view with glasses
(we note that comparing colors without the glasses is pointless and can result in misleading conclusions). We
used three different pairs of red/cyan glasses: Reel3-D No. 7003, IMAX Fujitsu and the glasses provided by
ABC to view the television show Medium. The results were independent of the glasses.

Our comparisons describe hue faithfulness except where noted. We also comment on brightness, ghosting4 ,
and retinal rivalry3 when the differences were significant. Since PS preserves color when the left and right eye
values at a pixel are the same, we expect PS to be superior in hue and brightness approximation for most of
the examples in our test. We comment below only when PS is not the best. Unfortunately, PS also inherits any
problems with extreme retinal rivalry that exists when viewing the original left or right eye views through the

(a) LS (b) MPS (c) UN

(d) PS

Figure 2. Cube 6 - Stereo image rendered with different methods

Figure 3. Cube 6 - Left eye view with true color

filters. This phenomenon is apparent in Cubes 2 and 5 described below. Hence, our comparisons are primarily
between UN, LS and MPS. Recall that the red channel of MPS is computed by converting the left eye view to
grayscale and inserting it in the red channel of the anaglyph. In regions of low green and blue intensities, the
weighted average of R, G and B used to compute the intensity of the red channel may decrease the value of R
in the anaglyph making the image darker. This phenomenon is evident in the results for Cube 2.

For cube 1, the point (0,0,0) or black, is the same for all methods, as was (0, 0, 85). UN is the best at points
(85,0,0) and (85,0,85). PS is slightly worse, with MPS and LS equally bad. For (85,85,0), LS is only slightly
better than MPS, and UN and PS are equally poor. LS is again the best for (0,85,0), then UN, then PS, and
finally MPS. At (0,85,85) UN and LS are equally bad, and MPS is the worst. All are similar for the gray level
(85,85,85) although UN is slightly darker.

For cube 2, shades of red, UN is best for all points. However, UN, while being a similar hue, is too bright,
and there is conspicuous ghosting. LS and MPS are always too dark, but at points (171,0,0), (171, 85,85) and
(255,0,0), LS is the worst, while MPS is worst at (255,0,85), (255,85,85), (171,0,85), and (255,85,0). MPS and
LS are similar at (171,85,0). Retinal rivalry is a problem for PS.

Color cube 3 contains pale oranges and greens. The results are varied. At (171,171,0) UN is a similar hue,
but too light. MPS is next in accuracy and LS worst. At (255,171,0), UN is again too bright, then LS, and MPS.
UN, PS and MPS are equal, and LS is worst at (171,171,85) and (171,255,85). LS is best at (171,255,0), then

MPS, and UN last. LS and MPS are almost the same at (255,255,0), and UN is the worst. At (255,171,85), UN
is the best, followed by LS, then MPS. UN is consistently too light, but the hues are closer to the originals than
the hues of MPS or LS.

Cube 4 is shades of green. UN is the best at (0,171,0). PS is second, MPS is too light, and LS is too dark.
For the points (0,255,0), (85,171,0),(85,255,0), (0,171,85), (0,255,85), (85,171,85), and (85, 255,85), there is a
large amount of ghosting and retinal rivalry in PS. UN is consistently second best for these points, with a slightly
different hue, but with the least ghosting and retinal rivalry. MPS is third with a different hue and too light. LS
is worst with a much darker intensity and a different hue.

Cube 5 is the blue region. All ellipsoids have severe ghosting and retinal rivalry. At (0,0,171), UN is best,
followed by PS and MPS equally. LS is too light and the wrong hue. UN is again the most accurate at (85,0,171),
PS is too light, LS is the wrong hue, and MPS is too dark and the wrong hue. UN is the best approximation
at (0,85,171) and (0,85,255). PS is slightly light, and MPS and LS are about the same-too light and the wrong
hue. At (85,85,255), UN is the best, then MPS, LS, and PS. Extreme retinal rivalry makes color determination
difficult for PS at (85,0,255). For this case, UN is second, then LS, and then MPS. PS is again the closest at
(85,85,171), followed by MPS. UN and LS are equally too light and the wrong hue. The worst ghosting takes
place at (0,0,255), with MPS best and the others almost impossible to see because of the retinal rivalry.

Cube 6 (Figures 3 and 2) contains the purple hues. UN is best for most cases. UN is best for (171,85,171) and
(171,85,255), followed by PS which has more ghosting. LS and MPS were too dark, but MPS was the darkest.
For the remaining points the order in decreasing hue approximation is UN, LS and MPS. For these remaining
points there is significant retinal rivalry in PS. There is less retinal rivalry and ghosting is least for UN.

Cube 7 is the cyan region. There is considerable ghosting and retinal rivalry in PS. Second is MPS, with the
right hue, but too light. LS is always the wrong hue, but the best brightness match. UN is consistently too dark
and the wrong hue.

Cube 8 is the white corner of the RGB cube, the least saturated colors. All the methods produce ap-
proximately the same image for (171,171,171) and (255,255,255). All produce images of equal brightness at
(171,171,255), but UN has a distinct rim in the ghosting area, an interesting phenomenon. At (171,255,171)
LS is the wrong hue, MPS is worse, and UN is the worst but has the least amount of ghosting. UN is best at
(255,171,171). LS is the wrong hue, and MPS is too dark and the wrong hue. At (255,255,171), MPS is best.
LS is too bright, and UN is far too bright. There is considerable retinal rivalry in the PS approximation at
(255,171,255), but it is the best hue approximation. UN and LS are about equal, and MPS is too dark. At
(171,255,255) none of the three methods produces the correct hue. MPS is far too light, and UN is too dark.

No method is best for approximating all colors. The choice of a method depends on the colors involved,
the importance of approximating brightness and the amount of ghosting produced. UN and PS were the most
consistently accurate. PS is almost always better than MPS and requires the least calculation of all methods
considered. LS usually produces a poor approximation for any hue. As mentioned above, retinal rivalry is severe
in the cube 2 (reds) and 5 (blues) regions. We recommend avoiding these colors when possible. In most cases
UN produces the least amount of ghosting and retinal rivalry without sacrificing brightness, a good reason to
consider it in spite of the computational complexity discussed below. All the methods are good for unsaturated
colors and for grayscale.

3. ACCELERATING THE CALCULATION

In the discussion below, the conclusions are based on the behavior of our methods for several continuous tone
photographs. Our test examples can be found at our website at http://research.csc.ncsu.edu/stereographics/.
Our computing environment for the uniprocessor case is a Dell 700m computer with 1.6 GHz CPU. Our parallel
processing environment is an 8-node Cluster, where each node has dual 2.8-3.06 GHz processors. More specific
information about the experimental environments and results can be found in section 4.

As stated in section 1.3, UN calculation is considerably more expensive computationally than the methods
PS, MPS and LS, where only matrix multiplications are required. A stereo pair of 1085 by 675 images we test
requires the unaccelerated UN method 127 seconds to render the anaglyph while the PS method requires less
than 0.01 second. Our efforts to accelerate the UN calculation is described in the following sections.

3.1. Exploiting Color Coherence
There are many forms of coherence in computer graphics and image compression that are used to make rendering
more efficient.5 In our case the color of a pixel is often similar to that of its neighbors. This implies that the
optimal solutions of the associated LPs should be “close” in the sense that solutions will often be the same or
“adjacent” on the simplex defining the set of feasible solutions. We seek to find ways to exploit this in the simplex
algorithm. More specifically, the linear programs for all pixels are similar in that they have the same objective
function and constraint matrix, the only difference being the right hand values ±(Nd)i of the constraints when
put in the canonical form (1).

Moreover, according to Theorem 3.1 from D. Bertsimas and J. Tsitsiklis,6 if the difference between each
component of the right hand sides of two such problems is within a certain interval, and we have already com-
puted the solution to one of the problems, then the other can be solved with a simple matrix-vector multiplication.

Theorem 3.1. Suppose that some component bi of of the right hand side vector b is changed to bi + δ, and δ
satisfies:

max
{j|βji>0}

(−xM(j)

βji
) ≤ δ ≤ min

{j|βji<0}
(−xM(j)

βji
)

(xM(j) and βji are determined by the current optimal solution and the integer i). Then the optimal solution, as
a function of δ, is given by cT

MM−1(b + δei), where vector cT
M and matrix M−1 are associated with the current

optimal solution.

In our specific problem the difference between the right hand sides of two linear programs depend on the
difference between the colors of the two corresponding pixels. Applying the theorem above, after computing the
optimal solution for one pixel P of the image, we search the neighborhood of P to collect pixels that have colors
that lie within the bounds given by the Theorem and for which we can use a matrix-vector multiplication to
compute the optimal solution. Instead of solving a linear system to find x = M−1y for each case, we precompute
all 19C15 = 3876 matrix inverses for this problem (this includes slack and surplus variables) and ignore row
permutation costs during processing. This reduces the complexity of finding x from O(n3) to O(n2) complexity,
potentially a significant savings when processing video or large images. To test the efficiency of this concept we
first design a simple search that investigates pixels in the same row of the pixel P for which we have an optimal
solution. This simple search reduces the running time of the program by 55 to 65 percent on our uniprocessor
system for the set of continuous tone images we chose.

A simple row search does not consider and exploit the speedup technique for all the qualifying pixels sur-
rounding P. We then extend the procedure to include a depth-first search starting from pixel P. A stack technique
is used where for each loop the head of the stack P is popped and its 8 waiting neighbors are examined. Those
with color sufficiently close to P are pushed into the stack. The optimal solution for every pixel in the stack can
be computed in accordance with Theorem 3.1. This continues until the stack is empty. This mechanism further
reduces the running time of the program with simple search by about 45 percent for the set of images we chose.

In our implementation initially all pixels are marked as waiting or unprocessed. The program keeps a pointer
to the next waiting pixel. We move the pointer, row by row, from the bottom to the top of the image. After
computing an optimal solution at the current waiting pixel, we perform a depth-first search described above,
process all qualified pixels with matrix-vector multiplication and mark all of them as complete or processed.
Figure 47 illustrates how the depth-first search works. Figure 4(c) is the rendered stereo image, and Figures 4(a)
and 4(b) are partially completed results of the program with the program pointer moved to fifth and half of the
image, respectively. In Figure 4(a) and 4(b), pixels in gray areas are not processed yet, or in waiting status, and
pixels in colored areas are processed, or in complete status. In Figures 4(a) and 4(b), we see how the algorithm
progresses by exploiting the color coherence of these areas. In Figure 4(a), although the program pointer has
only moved through one fifth of the image, the completed pixels include part of the sky and the man’s cloth.
In Figure 4(b) we can see most of the image has been processed, although the pointer has just moved through
half of the image. The number of pixels processed is obviously larger than the number of LPs solved. In Figure
4(b), for example, at least all the colored pixels in the upper half of the image have been processed with the
inexpensive matrix-vector multiplication, because the program pointer has never moved to that part.

(a) Fifth-completed (b) Half-completed (c) The complete
stereo image

Figure 4. Depth-first searching mechanism

(a) The ex-
treme example

(b) Row-wise dividing (c) Col-wise dividing (d) Block-wise divid-
ing

Figure 5. An extreme example

3.2. Parallel Processing

The increase in speed of the UN calculation described above is not sufficient to render images of size 1K by 1K
at video rates on our uniprocessor system. Hence we sought to apply parallel processing techniques to further
reduce the total running time.

There are obvious parallel computation techniques that can be applied to our problem that do not require
an elaborate connection network and message passing. See Foley, van Dam, Feiner and Hughes5 for an overview
of parallel rasterization methods. A natural approach is to divide the image into several equal parts and pass
each part to a different processor. If we do not include the depth-first search, computations for nonintersecting
parts can be treated as completely independent; all pixels are processed independently.

However, if the searching mechanism is included, we expect that even for a given image, different data dividing
schemes can result in considerably different performance. Here we show an extreme example. Consider the image
in Figure 5(a) where all pixels in a column have the same color; for each column, the program has to execute
the expensive LP calculation once. If we use the row-wise dividing scheme, each processor is assigned a set
of consecutive rows of the image, as in Figure 5(b), and the color locality cannot be fully exploited. However,
applying the column-wise method to divide the image, as in Figure 5(c), all the pixels in the column are processed
at low cost. If we divide the image into nearly square blocks, each processor gets a block as shown in Figure 5(d),
and we expect the execution time to lie between that of the other two methods (assuming, of course, processors
of equal power).

Obviously, there is no static data dividing scheme that is best for all images if we exploit coherence within, but
not among, blocks. We expect some processors to require more computation than others, because our algorithm
takes advantage of color coherence which can be very irregular. To show this we applies our UN algorithm on
several pairs of continuous tone images, with different numbers of processors and different data dividing schemes.
As expected, we found that there is considerable difference between the amounts of running time of different
computing nodes. We also notice a trend that the imbalance can grow with the number of processors applied to
the problem. Since we are interested in processing video data, we seek a predistributed load balancing scheme
that monitors processor computing requirements over successive frames and adjusts partitioning accordingly.

To study the problem we first develope a partition adjustment algorithm where workloads for different nodes
on a static image are modified. We first run the parallel algorithm with static data dividing scheme, sort the
execution times for each processor and then reallocate to attempt to attain the optimal allocation where each

(a) Left eye
view

(b) Right eye
view

(c) Stereo im-
age

Figure 6. A 203 × 305 pair of images

(a) Left eye
view

(b) Right eye
view

(c) Stereo image

Figure 7. A 230 × 261 pair of images

(a) Left eye view (b) Right eye view (c) Stereo image

Figure 8. A 1085 × 675 pair of images

processor requires the same amount of execution time(if such an allocation exists). The reallocation algorithm is
discussed in section 4. Our experiments show that this can reduce processing time considerably. We are trying
to extend this partitioning adjustment method for processing video.

Another focus of our future work will be to develop a method for processor communication so that workload
can be adjusted during calculation on a single frame. In a message passing scheme there are many challenges,
such as how to efficiently apply the depth-first search information across partition boundaries and how to reduce
communication cost. In the following section we present our computation results.

4. ACCELERATION RESULTS

4.1. Results of Exploiting Color Coherence

We discuss the effects of exploiting color coherence. The experiments are performed on a Dell 700m laptop
computer with Intel Pentium M 1.6GHz processor and 512MB memory. Three different implementations of
the UN calculation are tested: the original program where no search is performed and colors of all pixels are
computed using the simplex algorithm, the program with simple search along the row of the calculated pixel
and the program with depth-first search (D-F search) around the calculated pixel, as described in section
3.1. To illustrate the effect of exploiting color coherence on different images we chose a set of image pairs with
different sizes and features as shown in Figure 6 from Johnson and McAllister,8 Figure 7 from Hannisian9 and
Figure 8 from our website.7 The stereo image rendered with UN method is also displayed in the figures. The
running times for processing these images are listed in Table 2.In all tables in this section and section 4.2 all
times are in seconds.

Size No Search Simple Search D-F Search
Figure 6 203 × 305 11.02 2.51 1.19
Figure 7 230 × 261 9.98 4.82 2.80
Figure 8 1085 × 675 127.54 45.55 30.45

Table 2. The result of exploiting color coherence with different searching mechanisms

Simple search reduces the running time by 52 to 77 percent. The depth-first search further reduces the
running time by 33 to 53 percent for a total speedup percentage of 72 to 89 percent.

For images with relatively complicated color patterns and strong color contrasts like Figure 7, the speedup
from exploiting color coherence is not as pronounced as that for images with relatively simple patterns and weak
color contrasts like Figure 6.

4.2. Results of Parallel Computing

In this section we will discuss the effect of applying parallel processing techniques to reduce the total running
time. The experimental test bed is NCSU’s IBM Blade Center Linux Cluster Henry2, with up to 16 computing
nodes with 2.8-3.06 GHz Intel Xeon Processors and 4GB per node distributed memory. Our experiments are
performed on the pairs of images in Figure 8 in section 4.1. In a parallel environment, running time is the time
required by the longest running processor.

First we ran the original program (all pixels are processed with the simplex algorithm) on an increasing
number of processors to determine how the running time and computing speed (reciprocal of running time)
of the program vary with the number of processors. From Table 3 we can see that, as expected, there is an
approximately linear speedup with the number of processors. Since there is no interprocessor communication or
search, the speedup will be approximately linear regardless of the number of processors. The running time on
one node is 103 seconds vs. the 127 seconds on the uniprocessor system because in this case, each node of the
cluster has a much faster processor (2.8-3.6 GHz) than that of the uniprocessor we use in section 4.1 (1.6 GHz).

Number of nodes 1 2 4 8 16
Running time 103 56 27 16 10

Table 3. The running time varying with the number of computing nodes

Our next experiment was to run the program with a depth-first search on varying number of processors and
different data dividing schemes. Row-wise, column-wise and block-wise data dividing schemes are applied, as
described in section 3.2. Table 4 lists the result for each combination of number of processors and data dividing
schemes. In the table, Rows × Columns defines how the image is divided among the computing nodes. For
example, if the entry is 4 × 2, the image is divided by 8 = 4 × 2 processors into a 4 by 2 array. In the vertical
dimension the image is divided into 4 equal parts and in the horizontal dimension it is divided into two.

Rows × Columns Shortest running time Longest running time
2 × 1 12.48 19.23
1 × 2 12.29 16.78
4 × 1 4.20 9.32
2 × 2 6.26 9.37
1 × 4 6.56 8.81
8 × 1 1.59 5.68
4 × 2 1.65 6.18
2 × 4 2.57 4.81
1 × 8 2.96 4.84

Table 4. Shortest and longest running times with different data dividing schemes

The imbalance among the workloads of different processors is obvious and it grows with the total number of
processors. The largest relative difference occurs at 4×2, where the longest running time is 3.7 times the shortest.
Also note the difference between the 4 × 2 and the 2 × 4 cases which we would hope to be approximately the
same. It is also clear that imbalance exists for all the three dividing schemes described in section 3.2: row-wise,
column-wise and block-wise. Considering the irregular patterns of images to process, we can further conclude
that no static data dividing scheme will achieve balanced workloads among all processors.

We experiment with the static balancing algorithm introduced in section 3.2, where we sort running times
of processors and repartition the workload to attempt to achieve uniform running times. We have tested the
program on the images in Figure 8 with two processors, the 2 × 1 case above. First we partition the image
equally where the lower and upper parts are assigned 337 and 338 rows of the images, respectively. In this case
the running times are 19.23 seconds for the lower part and 12.48 seconds for the upper, a wide variation.

We then apply a simple algorithm that computes an adjustment according to the relative difference of the
running times, i.e., taking half of the difference between the running times, computing its percentage in the
total runtime and adjusting the number of rows accordingly. In this case the adjustment would be 19.23−12.48

2 ×
675

19.23+12.48 = 60.4, so the modified workload of the lower part should be 337 - 60 = 277 rows and the workload
of the upper part should be 398 rows. However, as shown in the second part of Table 5 below, there is still
imbalance between the running times of the two processors; because of the idiosyncrasies of this particular image
the upper part has a longer running time, which means we have over adjusted the workloads. Thus, we try
cutting the adjustment by half, i.e., from 60 rows to 30 rows. The result is shown in the third part of Table
5. We can see that although the upper part still has a longer running time, the imbalance is less. A similar
approach can be formulated for more than 2 processors.

Range of rows computed Running time
Upper part 338 to 675 12.48
Lower part 0 to 337 19.23
Upper part 278 to 475 15.45
Lower part 0 to 277 13.14
Upper part 308 to 675 13.90
Lower part 0 to 307 13.52

Table 5. Results of different workload distributing schemes

By applying the static balancing approach we improve the performance from 19.23 seconds to 15.45 seconds
in the first case, and to 13.90 seconds in the second case. Moreover, from the above table we can see the trend
that if we keep modifying the adjustment according to the difference in running times, the dividing scheme will
eventually converge to a balanced one where each processor has an approximately equal workload. This suggests
that predistributed load balancing may be effective in processing video streams if we adjust the workload for a
frame based on the processor running times for the previous frames.

4.3. Conclusion

In this section we list the results of several techniques to accelerate the UN anaglyph calculation. It is clear that
our efforts were successful in reducing the time for rendering an anaglyph image using the UN algorithm. For the
case of the 1085 × 675 image in Figure 3, the total processing time is reduce from 127 seconds (on 1 processor,
before taking advantage of color coherence) to 4.84 seconds (on 8 processors, exploiting color coherence with
depth-first search).

5. CONCLUSIONS AND FUTURE RESEARCH

We have described how to use UN approximation and the implied linear programming to solve an anaglyph
computation problem. We compared the results with other methods to compute anaglyphs and concluded that
there is still considerable work to be done.

Our future research will be focused on real time video rendering, with the challenge of exploiting the coherence
between adjacent video frames and achieving a balanced workload among processors.

We also intend to examine approximation in uniform color spaces such as CIEL*a*b* and consider developing
image processing filters to adjust images to reduce ghosting. Additionally, we are considering methods to modify
algorithms so that solutions have the equal color preservation property.

ACKNOWLEDGMENTS

We wish to thank Sophia Sullivan for her work on creating the image pairs, comparing the color results and
making comments to our paper. We also wish to thank Eric Dubois and his student Vu Tran for the LCD
anaglyph data used in this paper. We acknowledge Xiaoming Hu for his help in designing the parallel program
and analyzing the results.

REFERENCES
1. W. Sanders and D. F. McAllister, “Producing anaglyphs from synthetic images,” Proc. SPIE 5006, pp. 348–

358, 2003.
2. E. Dubois, “Producing anaglyphs from synthetic images,” Proc. IEEE Int. Conf. Acoustics Speech Signal

Processing 3, pp. 1661–1664, IEEE, (Salt Lake City, UT), 2001.
3. D. F. McAllister, Stereo Computer Graphics and other True 3D Technologies, Princeton U. Press, Princeton,

NJ, 1993.
4. A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, 2004.
5. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice,

Addison-Wesley Professional, 1995.
6. D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Nashua, NH, 1997.
7. Anaglyph stereo images, NCSU Computer Science Department Research in Stereo Computer Graphics,

http://research.csc.ncsu.edu/stereographics/.
8. T. Johnson and D. F. McAllister, “Realtime stereo imaging of gaseous phenomena,” Proc. SPIE 5664,

pp. 92–103, 2005.
9. R. Hannisian, “Los huicholes,” stereo image on http://www.ray3d.com/road.html/ .

